Two advanced bash tricks

Well, tricks is not the right word to describe advanced shell scripting usage, however, it does make some sense. These two topics are relevant to Bash version 4.0 and above, which is common for all modern-enough Linux distributions. Yours probably.

These ‘tricks’ are for advanced Bash scripting, and will assume you know how to handle the other advanced Bash topics. I will not instruct the basics here.

Trick #1 – redirected variable

What it means is the following.

Let’s assume that I have a list of objects, say: ‘LIST=”a b c d”‘, and you want to create a set of new variables by these names, holding data. For example:


How can you iterate through the contents of $LIST, and do it right? If you’re having only four objects, you can live with stating them manually, however, for a dynamic list (example: the results of /dev/sd*1 in your system), you might find it a bit problematic.

A solution is to use redirected variables. Up until recently, the method involved a very complex ‘expr’ command which was unpleasant at best, and hard to figure at its worst. Now we can use normal redirected variables, using the exclamation mark. See here:

# Place data into the list

# Read it!
echo ${!OBJECT}

Firstly – to assign value to the redirected variable, we must use ‘export’ prefix. $OBJECT=$RANDOM will not work.
Secondly – to show the content, we need to use exclamation mark inside the variable curly brackets, meaning we cannot call it $!OBJECT, but ${!OBJECT}.
We cannot dynamically create the variable name inside the curly brackets either, so ${!abc_$SUFFIX} won’t work either. We can create the name beforehand, and then use it, like this: DynName=abc_$SUFFIX ; echo ${!DynName}

Trick #2 – Using strings as an array index

It was impossible in the past, but now, one of the most useful features of having smart list is accessible in shell. We can now call an array with a label. For example:

for FILE in $( ls )
array["$FILE"]=$( ls -la $FILE | awk ‘{print $7}’ )

In this example we create array cells with the label being the name of the file, and populating them with the size (this is the result of ls -la 7th field) of this file.

This will work only if the array was declared beforehand using the following command (using the array name ‘array’ here):

declare -A array

Later on, it is easier to query data out of the array, as long as you know its index name. For example

echo ${array[$FILE]}

Of course – assuming there is an entry for ez-aton.txt in this array.

The best use I found for this feature so far was for comparing large lists, without the need to reorder the objects in the array. I find it to boost the capabilities of arrays in Bash, and arrays, in general, are very powerful tools to handle long and complex lists, when you need to note the position.

That’s all fox. Note that the blog editor might change quites (single and double) and dashes to the UTF-8 versions, which will not go well in a copy/paste attempt to experiment with the code examples placed here. You might need to edit the contents and fix the quotes/dashes manually.

If you have any questions, comment here, I will be happy to elaborate. I hope to be able to add more complex Bash stuff I get into once a while :-)

NetApp internals – how to add SSH keys without C$ nor NFS shares

This post will describe the process of placing SSH keys using the internal ‘systemshell’ command of NetApp. As always – when doing something which the vendor did not intend you to do, do it very carefully. This data was obtained from NetApp forums, and while I do not have the original post to link (I usually link to the original, as a courtesy to the original author), this is the content, as is.

First, set to advanced mode:
filer> priv set advanced

Then, unlock and set a password to diag account:
filer*> useradmin diaguser unlock
filer*> useradmin diaguser password

Start the systemshell, create the directory you need and put the pubkey generated in the authorized_keys file:
filer*> systemshell

login: diag
Password: the same you set in the previous step

filer% mkdir -p /mroot/etc/sshd/root/.ssh
filer% vi /mroot/etc/sshd/root/.ssh/authorized_keys
filer% sudo chown -R root:wheel /mroot/etc/sshd/root
filer% sudo chmod -R 0600 /mroot/etc/sshd/root

Last, exit systemshell, lock diag account and exit advanced mode:
filer% exit
filer*> useradmin diaguser lock
filer*> priv set admin

If you want to do it for any other user, just replace the word ‘root’ with the said user.

An additional note – I had to create a user to perform ‘df’ operations only. The purpose was to be able to obtain data using ‘ssh’ without disclosing the keys used for root SSH access, by having a very limited user, designed to do that.

So the commands to create such a user are as follows:

useradmin role add df -a cli-df*,login-ssh
useradmin group add df_users -r df
useradmin user add df -g df_users
(here you will be asked to enter the user’s password)

Hope it helps!



Windows 7 hammering dnsmasq

I migrated to dnsmasq just yesterday, and discovered that a Windows 7 machine was hammering the server with messages like this:

Feb  1 11:06:07 dns dnsmasq-dhcp[1078]: DHCPINFORM(eth0) 91:de:87:7b:e5:a8
Feb  1 11:06:07 dns dnsmasq-dhcp[1078]: DHCPACK(eth0) 91:de:87:7b:e5:a8 winpc

Googling a bit, I found out this link (with an explanation). The solution is fairly simple. Add the following line to your dnsmasq.conf file to solve the problem:



XenServer and its damn too small system disks

I love XenServer. I love the product, I believe it to be a very good answer for SMBs, and enterprises. It lacks on external support, true, but the price tag for many of the ‘external capabilities’ on VMware, for instance, are very high, so many SMBs, especially, learn to live without them. XenServer gives a nice pack of features, at a very reasonable price.

One of the missing features is the management packs of hardware vendors, such as HP, Dell and IBM. Well, HP does have something, and its installation is always some sort of a challenge, but they do, so scratch that. Others, however, do not supply management packs. The bright side is that with Domain0 being a full featured i386 Centos 5 distribution, I can install the Centos/RHEL management packs, and have a ball. This brings us to another challenge there – the size of the system disk (root partition) by default is too small – 4GB, and while it works quite well without any external components, it tends to get filled very fast with external packages installed, like Dell tools, etc. Not only that, but on a system with many patches the patches backups take their toll, and consume valuable space. While my solution will not work for those who aim at the smallest possible space, such as SD or Disk-on-Key for the XenServer OS, it aims for the most of us all, where the system resides on several tenths of gigabytes at least, and is capable of sustaining the ‘loss’ of additional 4GB. This process modifies the install.img file, and authors the CD as a new one, your own privately-modified instance of XenServer installation. Mind you that this change will be effective only for new installations. I have not tested this as the upgrade path for existing systems, although I believe no harm will be done to those who upgrade. Also – it was performed and tested on XenServer 6.2, and not 6.2 SP1, or prior versions, although I believe that the process should look pretty similar in nature.

You will need a Linux machine to perform this operation, end to end. You could probably use some Windows applications on the way, but I have no idea as to which or what.

Step one: Open the ISO, and copy it to somewhere useful (assume /tmp is useful):

mkdir /tmp/ISO
mkdir /tmp/RW
mount -o loop /path/to/XenServer-6.2.0-install-cd.iso /tmp/ISO
cd /tmp/ISOtar cf – . | ( cd /tmp/RW ; tar xf – )

Step two: Extract the contents of the install.img file in the root of the CDROM:

mkdir /tmp/install
cd /tmp/install
cat /tmp/RW/install.img | gzip -dc | cpio -id

Step three: Edit the contents of the definitions file:

vi opt/xensource/installer/

Change the value of ‘root_size’ to something to your taste. Mind you that with 4GB it was tight, but still usable, even with additional 3rd party tools, so don’t become greedy. I defined it to be 6GB (6144)

Step four: Wrap it up:

cd /tmp/install ; find . | cpio -o -H newc | gzip -9 > /tmp/RW/install.img

Step five: Author the CD, and prepare it to be burned:

cd /tmp/RW
mkisofs -J -T -o /share/temp/XenServer-6.2-modified.iso -V “XenServer 6.2″ -volset “XenServer 6.2″ -A “XenServer 6.2″ \
-b boot/isolinux/isolinux.bin -no-emul-boot -boot-load-size 4 -boot-info-table -R -m TRANS.TBL .

You now have a file called ‘XenServer-6.2-modified.iso’ in your /tmp, which will install your XenServer with the disk partition size you have set it to install. Cheers.

BTW, and to make it entirely clear – I cannot be held responsible to any damage caused to any system you tweaked using this (or for that matter – any other) guide I published.

Enjoy your XenServer’s new apartment!

Extracting/Recreating RHEL/Centos6 initrd.img and install.img

A quick note about extracting and recreating RHEL6 or Centos6 (and their derivations) installation media components:



mv initrd.img /tmp/initrd.img.xz
cd /tmp
xz –format=lzma initrd.img.xz –decompress
mkdir initrd
cd initrd
cpio -ivdum < ../initrd.img

Archive (after you applied your changes):

cd /tmp/initrd
find . | cpio -o -H newc | xz -9 –format=lzma > ../new-initrd.img



mount -o loop install.img /mnt
mkdir /tmp/install.img.dir
cd /mnt ; tar cf – –one-file-system . | ( cd /tmp/install.img.dir ; tar xf – )
umount /mnt

Archive (after you applied your changes):

cd /tmp
mksquashfs install.img.dir/ install-new.img

Additional note for Anaconda installation parameters:

I did not test it, however there is a boot flag called stage2= which should lead to a new install.img file, other than the hardcoded one. I don’t if it will accept /images/install-new.img as its flag, but it can be a good start there.

One more thing:

Make sure that the vmlinuz and initrd used for any custom properties, in $CDROOT/isolinux do not exceed 8.3 format. Longer names didn’t work for me. I assume (without any further checks) that this is isolinux limitation.

Attach multiple Oracle ASM snapshots to the same host

The goal – connecting multiple Oracle ASM snapshots (same source LUNs, of course) to the same machine. The next process will demonstrate how to do it.

Problem: ASM disks use a disk label called ASMLib to maintain access even when the logical disk path might change (like adding a LUN with a lower ID and rebooting the server). This solves a major problem which was experienced with RAW devices, when order changed, and the ‘wrong’ disks took the place of others. ASM labels are a vital part in managing ASM disks and ASM DiskGroups. Also – the ASM DiskGroup name should be unique. You cannot have multiple DiskGroups with the same name.

Limitations – you cannot connect the snapshot LUNs to the same server which has access to the source LUNs.


  1. Take a snapshot of the source LUN. If the ASM DiskGroup spans across several LUNs, you must create a consistency group (each storage device has its own lingo for the task).
  2. Map the snapshots to the target server (EMC – prepare EMC Snapshot Mount Points (SMP) in advance. Other storage devices – depending)
  3. Perform partprobe on all target servers.
  4. Run ‘service oracleasm scandisks‘ to scan for the new ASM disk labels. We will need to change them now, so that the additional snapshot will not use duplicate ASM labels.
  5. For each of the new ASM disks, run ‘service oracleasm force-renamedisk SRC_NAME TGT_NAME‘. You will want to rename the source name (SRC_NAME) to a unique target name, with some correlation to the snapshot name/purpose. This is the reasonable way of making some sense of a possibly very messy setup.
  6. As the Oracle user, with the correct PATH variables ($ORACLE_HOME should point to the CRS_HOME) and the right ORACLE_SID (for example – +ASM1), run: ‘renamedg phase=both dgname=SRC_DG_NAME newdgname=NEW_DG_NAME verbose=true‘. The value ‘SRC_DG_NAME’ represents the original (on the source) DiskGroup name, and the NEW_DG_NAME represents the new name. Much like when renaming the disks – the name should have some relationship with either the snapshot name, so you can find your hands and legs in this mess (again – imagine having six snapshots, each of a DiskGroup with four LUNs. Now – this is a mess).
  7. You can now mount the DiskGroup (named NEW_DG_NAME in my example) on both nodes


  1. Oracle GI is up and running all through this process
  2. I tested it with Oracle Other versions of 11.2.0.x might work, I have no clue about previous 11.1.x versions, or any earlier versions.
  3. It was tested on Linux. My primary work platform. It was, to be exact, on RHEL 6.4, but it should work just the same on any RHEL-like platform. I believe it will work on other Linux platforms. I have no clue about running it on any other Unix/Windows platform.
  4. The DiskGroup should not be mounted (no reason for it to be mounted right on discovery). Do not manually mount it prior to performing this procedure.

Good luck, and post a comment if you find this explanation either unclear, or if you encounter any problem.




XenServer – increase LVM over iSCSI LUN size – online

The following procedure was tested by me, and was found to be working. The version of the XenServer I am using in this particular case is 6.1, however, I belive that this method is generic enough so that it could work for every version of XS, assuming you're using iSCSI and LVM (aka - not NetApp, CSLG, NFS and the likes). It might act as a general guideline for fiber channel communication, but this was not tested by me, and thus - I have no idea how it will work. It should work with some modifications when using Multipath, however, regarding multipath, you can find in this particular blog some notes on increasing multipath disks. Check the comments too - they might offer some better and simplified way of doing it.

So - let's begin.

First - increase the size of the LUN through the storage. For NetApp, it involves something like:

lun resize /vol/XenServer/luns/SR1.lun +1t

You should always make sure your storage volume, aggregate, raid group, pool or whatever is capable of holding the data, or - if using thin provisioning - that a well tested monitoring system is available to alert you when running low on storage disk space.

Now, we should identify the LUN. From now on - every action should be performed on all XS pool nodes, one after the other.

cat /proc/partitions

We should keep the output of this command somewhere. We will use it later on to identify the expanded LUN.

Now - let's scan for storage changes:

iscsiadm -m node -R

Now, running the previous command again will have a slightly different output. We can not identify the modified LUN

cat /proc/partitions

We should increase it in size. XenServer uses LVM, so we should harness it to our needs. Let's assume that the modified disk is /dev/sdd.

pvresize /dev/sdd

After completing this task on all pool hosts, we should run sr-scan command. Either by CLI, or through the GUI. When the scan operation completes, the new size would show.

Hope it helps!

BackupExec 2012 (14) on newer Linux

In particular – Oracle UEK, which “claims” to be 2.6.39-xxx, but is actually 3.0.x with a lower version number. Several misbehaviors (or differences) of version 3 can be found. One of them is related to BackupExec. The service would not start on OEL6 with UEK kernels. The cause of it is an incorrect use of a function – getIfAddrs. Everything can be seen in this amazing post. The described patch works, at least to allow the service to start. Check out the comments for some insights about how to identify the correct call.

I am re-posting it here, so it can be found for Oracle Universal Enterprise Kernel (UEK) as well.

NetApp “Broken disk label”

When using ‘disk show -v’ on a NetApp filer version 7.3.x, following replacement or addition of disk(s), you might see the above mentioned message. It is caused by incorrect disk label – of OnTap version 8, on an OnTap version 7.3.x system. The system cannot handle the incorrect label, and thus – ignores the disk.

A set of actions is required to clean the label and allow the NetApp to use this specific disk. The easiest method (although it will not be described here) would be to place the disk back in an OnTap 8 NetApp device, and clean the label from there, however, it is not always possible.

On your OnTap 7.3.x system, do the following (assuming you know the address of the disk, right?) – taken from NetApp’s forums here.

disk assign <diskid>
priv set diag
labelmaint isolate <diskid>
label wipe <diskid>
label wipev1 <diskid>
label makespare <diskid>
labelmaint unisolate
priv set

The fifth or sixth lines might fail to run, but still – the process will succeed as a whole.

SABnzbd and high CPU usage on weak CPUs

SABnzbd is a nice tool. I just replaced my previous nzbget with it, due to its better handling of the obfuscated names in usenet groups. However, on an Atom CPU, the max download speeds did not go over ~5MB/s on a 100Mb/s link. This is rather sad, because nzbget did get the whole ~11MB/s speeds.
The source of this slowness is the handling of the SSL within python (or SABnzbd, to be exact) which cannot exceed a single core. A workaround for this problem was using stunnel with the SABnzbd, as described here. Because stunnel uses multiple cores, handling of the connections can exceed the rather weak CPU limit into other cores. Following this procedure, I was able to reach 11-12MB/s speeds.

Notice a little correction: The bottom string: connect, has to have the equal sign, like this:

connect =