Archive for the ‘Clusters’ Category

Timeout when using Ricci as the backend for Corosync update in Redhat Cluster

Saturday, March 14th, 2015

When using Ricci as the engine for ‘cman_tool version -r’ command, you will experience timeouts (and practically – you will be unable to use ricci to update the cluster configuration across the nodes) when the ricci user password contains XML-sensitive characters, like <>&, etc.
As they say – FYI ūüôā

ZFS with Redhat Cluster Suite

Friday, July 25th, 2014

This is a very nice project I have been working on. The hardware at hand - two servers, with a shared SAS bus containing several SAS disks. Since it's a shared bus, no RAID solution would cut it, and as I don't want to waste disks with ASM ("normal" redundancy meaning half the size...), I went to ZFS storage.

ZFS is a wonderful technology, with many advantages, but with some dangerous pitfalls. As I prefer Linux, I did not bother with any Sloaris solutions, and went directly to Centos 6. I will describe my cluster setup below.

I will disclose the entire setup, including hardware layout, Linux platform, ZFS module parameters, the Redhat Cluster Suite ZFS agent I wrote and the cluster.conf configuration file. I will also share my considerations regarding some of the choices I made. In addition, this system was designed to act as NFS storage for Citrix XenServer pool, so I will have to describe the changed I had to perform on the XenServer itself (which might make it unsupported, but I will have to live with it), to allow it to handle the timeouts resulting by server failover.

So first - the servers - each having a single CPU (quad core), 24GB RAM, and dual 1Gb/s NICs. Also - a tiny internal SATA disk is used for the OS. The shared disks - at the moment, 10 SAS disks, dual port (notice - older HP disks might mark in a very small letters that they are only a single-port SAS disks...), 72GB, 10K RPM. Zpool called 'share' with two 5 disks RaidZ1 vdevs. As I mentioned before - ZFS seemed like the best possible option allowing me to achieve my goals at minimal cost.

When I came to this project, I wanted to be able to use a native ZFS cluster agent, and not a 'script' agent, which takes a very long time to respond (30 seconds). Also - I wanted to be able to handle multiple storage pools concurrently - each floating on its own. While I have only one at the moment, I wanted the ability to have a fine-grained control over multiple pools. In addition - I am unable (or unwilling?) to handle the multiple filesystems introduced with each pool. I wanted to be able to import or export the pool silently, and with a clear head, thus I had to verify that the multiple filesystems are not in use as part of the export process.

As an agent, I wanted to comply with Redhat Cluster Suite (RHCS from now on) OCF syntax. I used the supplied fs.sh script as an inspiration for my agent script, so some of it might look familiar. All credit goes to the original authors, of course.

The operating system I selected was Centos 6. Centos is based on Redhat Linux, and I find it mature and stable, which is exactly what I want when I plan a production-ready, enterprise-class storage solution. The version had to be x86_64, due to ZFS requirements, and due to the amount of RAM in the server.

To handle ZFS options, I added a file called /etc/modprobe.d/zfs.conf, with the following content

install zfs /bin/rm -f /etc/zfs/zpool.cache && /sbin/modprobe --ignore-install zfs
options zfs zfs_arc_max=12593790976
options zfs zfs_arc_min=12593790975

I had to verify there is no zpool.cache file. Since my pool was rather small (planned for 24 disks max), I was not concerned by the longer import process caused by not having the zpool.cache file. I was more concerned with automatic import process which might happen, and had to prevent it at almost any cost. In addition, I learned from other systems that the arc memory should never exceed half the RAM, and it should be given just a little under that.

Of course, when changing such module settings, you need to recreate initrd (dracut -f) to be on the safe side later on.

The zfs.sh agent script was placed in /usr/share/cluster directory. You must have rgmanager installed for this directory to exist, and anyhow, without rgmanager, you will have no cluster whatsoever.

This is the contents of the zfs.sh file. Notice that it is not compatible with Luci, so if you're using it - them kids won't play well together.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#!/bin/bash
 
LC_ALL=C
LANG=C
PATH=/bin:/sbin:/usr/bin:/usr/sbin
export LC_ALL LANG PATH
# Private return codes
FAIL=2
NO=1
YES=0
YES_STR="yes"
 
. $(dirname $0)/ocf-shellfuncs
 
meta_data()
{
    cat &lt; EOT
 
    1.0
 
	This script will import and export ZFS storage pools
	It will make sure to mount and umount all child filesystems
 
        This is a ZFS pool
 
                Symbolic name for this zfs pool
 
                File System Name
 
		ZFS Pool name or ID
 
                ZFS pool name
 
		ZFS Pool alternate mount
 
                ZFS pool alternate mount
 
                If set, the cluster will kill all processes using 
                this file system when the resource group is 
                stopped.  Otherwise, the unmount will fail, and
                the resource group will be restarted.
 
                Force Unmount
 
                If set and unmounting the file system fails, the node will
                immediately reboot.  Generally, this is used in conjunction
                with force-unmount support, but it is not required.
 
                Seppuku Unmount
 
	<!-- Note: active monitoring is constant and supplants all check depths -->
        <!-- Checks to see if we can read from the mountpoint -->
 
        <!-- Checks to see if we can write to the mountpoint (if !ROFS) -->
 
EOT
}
 
ocf_log()
{
        echo $*
}
 
verify_driver() {
	ocf_log info "Verifying ZFS driver"
	lsmod | grep -w zfs &gt; /dev/null &gt;&amp;1 &amp;&amp; return 0
	ocf_log err "ZFS driver is not loaded"
	return $OCF_ERR_ARGS
}
 
verify_poolname() {
	ocf_log info "Verify pool name "
	if [ -z "$OCF_RESKEY_pool" ]
	then
		ocf_log err "Missing pool name"
		return $OCF_ERR_ARGS
	fi
	zpool import | grep pool: | grep -w $OCF_RESKEY_pool &gt; /dev/null 2&gt;&amp;1 &amp;&amp; return 0
	ocf_log err "Cannot identify pool name"
	return $OCF_ERR_ARGS
}
 
verify_mounted_poolname() {
	ocf_log info "Verify pool name "
	if [ -z "$OCF_RESKEY_pool" ]
	then
		ocf_log err "Missing pool name"
		return $OCF_ERR_ARGS
	fi
	zpool list $OCF_RESKEY_pool &gt; /dev/null &gt;&amp;1 &amp;&amp; return 0
	ocf_log err "Cannot identify pool name"
	return $OCF_ERR_ARGS
}
 
verify_mountpath() {
	ocf_log info "Verifying alternate root mount path"
	[ -z "$OCF_RESKEY_mount" ] &amp;&amp; return 0
	declare mp="${OCF_RESKEY_mount}"
	case "$mp" in
		/*)    	# found it
                	;;
        	*)      # invalid format
			ocf_log err 
"verify_mountpath: Invalid mount point format (must begin with a '/'): '$mp'"
                return $OCF_ERR_ARGS
                ;;
        esac
}
 
pool_import() {
	ocf_log info "Importing pool"
	OPTS=""
	[ -n "$OCF_RESKEY_mount" ] &amp;&amp; OPTS="-R $OCF_RESKEY_mount"
	zpool import $OCF_RESKEY_pool $OPTS
	RET="$?"
	if [ "$RET" -ne "0" ]
	then
		ocf_log info "Cannot import without applying force"
		zpool import -f $OCF_RESKEY_pool $OPTS
		RET="$?"
	fi
	if [ "$RET" -ne "0" ]
	then
		ocf_log err "Pool import failed for $OCF_RESKEY_pool. error=$RET"
		return 1
	fi
	ocf_log info "Imported ZFS pool"
	return $RET
}
 
check_and_release_fs() {
	ocf_log info "Checking and releasing FS"
	FS=""
	case ${OCF_RESKEY_force_unmount} in
        $YES_STR|on|true|1)	force_umount=$YES ;;
        *)		        force_umount="" ;;
        esac
 
	RET=0
	for i in `zfs list -t filesystem | grep ^${OCF_RESKEY_pool} | awk '{print $NF}'`
	do
		# To be on the safe side. Why not?
		sleep 1
		# Is it mounted?
		if ! df -l | grep -w "$i" &gt; /dev/null 2&gt;&amp;1
		then
			ocf_log info "Filesystem $i is not mounted"
			continue
		fi 	
		if [ `lsof $i | wc -l` -gt "0" ]
		then
			ocf_log info "Filesystem $i is in use"
			if [ "$force_umount" ]
			then
				ocf_log info "Attempting to kill processes on $i filesystem"
				fuser -k $i
				sleep 2
				if [ `lsof $i | wc -l` -gt "0" ]
				then
					ocf_log err "Cannot umount filesystem $i - filesystem in use"
					return 1
				fi
			else
				ocf_log err "Cannot umount filesystem $i
 - filesystem in use"
                                return 1
			fi
		fi
	done
	return $RET	
}
 
self_fence() {
	ocf_log info "Should we validate and call self-fence?"
	case ${OCF_RESKEY_self_fence} in
		$YES_STR|on|true|1)       self_fence=$YES ;;
       		*)              self_fence="" ;;
        esac	
 
	if [ "$self_fence" ]; then
		ocf_log alert "umount failed - REBOOTING"
               	sync
                reboot -fn
	fi
	return $OCF_ERR_GENERIC
}
 
pool_export() {
	ocf_log info "Exporting zfs pool"
	check_and_release_fs || self_fence
	zpool export $OCF_RESKEY_pool
	RET="$?"
	if [ "$RET" -ne "0" ]
	then
		ocf_log err "Pool export failed for $OCF_RESKEY_pool. error=$RET"
		return 1
	fi
	return $RET
}
 
start() {
	ocf_log info "Starting ZFS"
	verify_driver || return $OCF_ERR_ARGS 
	verify_poolname || return $OCF_ERR_ARGS
	verify_mountpath || return $OCF_ERR_ARGS
	pool_import
	# Handle filesystem?
}
 
stop() {
	ocf_log info "Starting ZFS"
	verify_driver || return $OCF_ERR_ARGS 
	verify_mounted_poolname || return $OCF_ERR_ARGS
	verify_mountpath || return $OCF_ERR_ARGS
	# Handle filesystem?
	pool_export
}
 
is_imported() {
	ocf_log debug "Checking if $OCF_RESKEY_pool is imported"
	zpool list ${OCF_RESKEY_pool} &gt; /dev/null &gt;&amp;1
	return $?
}
 
is_alive() {
	ocf_log debug "Checking ZFS pool read/write"
	declare file=".writable_test.$(hostname)"
	declare TIMEOUT="10s"
	[ -z "$OCF_CHECK_LEVEL" ] &amp;&amp; export OCF_CHECK_LEVEL=0
	mount_point=`zfs list ${OCF_RESKEY_pool} | grep ${OCF_RESKEY_pool} | awk '{print $NF}'`
	test -d "$mount_point"
        if [ $? -ne 0 ]; then
                ocf_log err "${OCF_RESOURCE_INSTANCE}: is_alive: $mount_point is not a directory"
                return $FAIL
        fi
	[ $OCF_CHECK_LEVEL -lt 10 ] &amp;&amp; return $YES
 
        # depth 10 test (read test)
        timeout -s 9 $TIMEOUT ls "$mount_point" &gt; /dev/null 2&gt; /dev/null
        errcode=$?
        if [ $errcode -ne 0 ]; then
                ocf_log err "${OCF_RESOURCE_INSTANCE}: is_alive: failed read test on [$mount_point]. Return code: $errcode"
                return $NO
        fi
 
	[ $OCF_CHECK_LEVEL -lt 20 ] &amp;&amp; return $YES
 
        # depth 20 check (write test)
        rw=$YES
        for o in `echo $OCF_RESKEY_options | sed -e s/,/ /g`; do
                if [ "$o" = "ro" ]; then
                        rw=$NO
                fi
        done
	if [ $rw -eq $YES ]; then
                file="$mount_point"/$file
                while true; do
                        if [ -e "$file" ]; then
                                file=${file}_tmp
                                continue
                        else
                                break
                        fi
                done
                timeout -s 9 $TIMEOUT touch $file &gt; /dev/null 2&gt; /dev/null
                errcode=$?
                if [ $errcode -ne 0 ]; then
                        ocf_log err "${OCF_RESOURCE_INSTANCE}: is_alive: failed write test on [$mount_point]. Return code: $errcode"
                        return $NO
                fi
                rm -f $file &gt; /dev/null 2&gt; /dev/null
        fi
 
	return $YES
}
 
monitor() {
	ocf_log debug "Checking ZFS pool $OCF_RESKEY_pool, Level $OCF_CHECK_LEVEL"
	verify_driver || return $OCF_ERR_ARGS 
	is_imported
	RET=$?
	if [ "$RET" -ne $YES ]; then
                ocf_log err "${OCF_RESOURCE_INSTANCE}: ${OCF_RESKEY_device} is not mounted on ${OCF_RESKEY_mountpoint}"
                return $OCF_NOT_RUNNING
        fi
	is_alive
	return $RET
}
 
if [ -z "$OCF_CHECK_LEVEL" ]; then
	OCF_CHECK_LEVEL=0
fi
 
case $1 in
start)
	ocf_log info "zfs start $OCF_RESKEY_pooln"
	OCF_CHECK_LEVEL=0
	monitor
	[ "$?" -ne "0" ] &amp;&amp; start || ocf_log info "$OCF_RESKEY_pool is already mounted"
	exit $?
	;;
stop)
	ocf_log info "zfs stop $OCF_RESKEY_pooln"
	OCF_CHECK_LEVEL=0
	monitor
	[ "$?" -eq "0" ] &amp;&amp; stop || ocf_log info "$OCF_RESKEY_pool is not mounted"
	exit $?
	;;
status|monitor)
	ocf_log debug "ZFS monitor $OCF_RESKEY_pool"
	monitor
	exit $?
	;;
meta-data)
	echo -e "zfs metadat $OCF_RESKEY_addressn" &gt;&gt;/tmp/out
	meta_data
	exit 0
	;;
validate-all)
	exit 0
	;;
*)
	echo "usage: $0 {start|stop|status|monitor|restart|meta-data|validate-all}"
	exit $OCF_ERR_UNIMPLEMENTED
	;;
esac

All I had to do now was to build the cluster.conf file.

The reason I placed the IP address as the last to start and the first to stop was that the other way around, the NFS client would receive an ordered disconnection command, and would not bother to establish a connection with the remaining server. Abruptly taking away the clustered IP address causes the NFS clients to initiate a reconnection process, of which the systems are supposed to recover

I have left this article incomplete for a while now. It has some stuff I do like to share, so I am sharing it as-is. I will (some day) complete it.

RedHat cluster on RHEL6 and KVM-based VMs

Wednesday, August 1st, 2012

The concept of running a virtual machine, KVM-based, in this case, under RHCS is acceptable and reasonable. The interesting part is that the <vm/> directive replaces the <service/> directive and acts as a high-level directive for VMs. This allows for things which cannot be performed with regular 'service', such as live migration. There are probably more, but this is not the current issue.

An example of how it can be done can be shown in this excellent explanation. You can grab whatever parts of it relevant to you, as there is an excellent combination of DRBD, CLVM, GFS and of course, KVM-based VMs.

This whole guide assumes that the VMs reside on a shared storage, which is concurrently accessible by both (all?) hosts. When this is not the case, like when the shared filesystem is ext3/4 and not GFS, and the virtual disk image file is located on it. In this particular case, you would want to connect the VM to the mount. This cannot be performed, however, when using the <vm/> as a top directive (like <service/>), as it does not allow for child-resources.

As the <vm/> directive allows to be defined (with some limitations) as a child resource in a <service/> group, it inherits some properties from its parent (the <service/> directive), while some other properties are not mandatory and will be ignored. A sample configuration would be this:

<resources>
     <fs device="/dev/mapper/mpathap1" force_fsck="1" force_unmount="1" fstype="ext4" mountpoint="/images" name="vmfs" self_fence="0"/>
</resources>
<service autostart="1" domain="vm1_domain" max_restarts="2" name="vm1" recovery="restart">
     <fs ref="vmfs"/>
     <vm migrate="pause" name="vm1" restart_expire_time="600" use_virsh="1" xmlfile="/images/vm1.xml"/>
</service>

This would do the trick. However, the VM will not be able to live migrate, but will have to shutdown/startup for each cluster takeover.

XenServer 6.0 with DRBD

Wednesday, January 18th, 2012

DRBD is a low-cost shared-SAN-like solution, which has several great benefits,¬†among which¬†are no single point of failure, and very low cost (local storage and network cable). Its main disadvantages are in the need to constantly monitor it, and make sure it does what’s expected. Also – in some cases – performance might be affected greatly.

If you need XenServer pool with VMs XenMotion (used to call it LiveMigration. I liked it better then…), but you cannot afford or do not want classic shared storage acting a single point of failure, DRBD could be for you. You have to understand the limitations, however.

The most important limitation is with data consistency. If you aim at using it as Active/Active, as I have, you need to make sure that under any circumstance you will not have split brain, as it will mean losing data (you will recover to an older point in time). If you aim at Active/Passive, or all your VMs will run on a single host, then the danger is lower, however Рfor A/A, and VMs spread across both hosts Рthe danger is imminent, and you should be aware of it.

This does not mean that you will have to run crying in case of split brain. It means you might be required to export/import VMs to maintain consistent data, and that you will have a very long downtime. Kinda defies the purpose of XenMotion and all…

Using the DRBD guid here, you will find an excellent solution, but not a complete one. I will describe my additions to this document.

So, first, you need to download the DRBD packages. I have re-packaged them, as they did not match XenServer with XS60E003 update. You can grub this particular tar.gz here:¬†drbd-8.3.12-xenserver6.0-xs003.tar.gz¬†. I did not use DRBD 8.4.1, as it has shown great instability and liked getting split-brained all the time. Don’t want it with our system, do we?

Make sure you have defined the private link between your hosts, both as a network interface, as described, and in both servers’ /etc/hosts file. It will be easier later. Verify that the host hostname matches the configuration file, else DRBD will not start.

Next, follow the mentioned guide.

Unlike this guide, I did not define DRBD to be Active/Active in the configuration file. I have noticed that upon reboot of the pool master (and always it), probably due to timing issues, as the XE Toolstack did not release the DRBD device, it would have started in split-brain mode, and I was incapable of handling it correctly. No matter when I have tried to set the service to start, as early as possible, it would have always start in split-brain mode.

The workaround was to let it start in passive mode, and while being read-only device, XE Toolstack cannot use it. Then I wait (in /etc/rc.local) for it to complete sync, and connect the PBD.

You will need each host PBD for this specific SR.

You can do it by running:

for i in `xe host-list --minimal` ; do 
echo -n "host `xe host-param-get param-name=hostname uuid=$i`  "
echo "PBD `xe pbd-list sr-uuid=$(xe  sr-list name-label=drbd-sr1 --minimal) --minimal`"
done

This will result in a line per host with the DRBD PBD uuid. Replace drbd-sr1 with your actual DRBD SR name.

You will require this info later.

My drbd.conf file looks like this:

# You can find an example in  /usr/share/doc/drbd.../drbd.conf.example

#include "drbd.d/global_common.conf";
#include "drbd.d/*.res";

resource drbd-sr1 {
protocol C;
startup {
degr-wfc-timeout 120; # 2 minutes.
outdated-wfc-timeout 2; # 2 seconds.
#become-primary-on both;
}

handlers {
    split-brain "/usr/lib/drbd/notify.sh root";
}

disk {
max-bio-bvecs 1;
no-md-flushes;
no-disk-flushes;
no-disk-barrier;
}

net {
allow-two-primaries;
cram-hmac-alg "sha1";
shared-secret "Secr3T";
after-sb-0pri discard-zero-changes;
after-sb-1pri discard-secondary;
after-sb-1pri consensus;
after-sb-2pri disconnect;
#after-sb-2pri call-pri-lost-after-sb;
max-buffers 8192;
max-epoch-size 8192;
sndbuf-size 1024k;
}

syncer {
rate 1G;
al-extents 2099;
}

on xenserver1 {
device /dev/drbd1;
disk /dev/sda3;
address 10.1.1.1:7789;
meta-disk internal;
}
on xenserver2 {
device /dev/drbd1;
disk /dev/sda3;
address 10.1.1.2:7789;
meta-disk internal;
}
}

I did not force them both to become primary, as split-brain handling in A/A mode is very complex. I have forced them to start as secondary.
Then, in /etc/rc.local, I have added the following lines:

echo 1 > /sys/devices/system/cpu/cpu1/online
while grep sync /proc/drbd > /dev/null 2>&1
do
        sleep 5
done
/sbin/drbdadm primary all
/opt/xensource/bin/xe pbd-plug uuid=dfb02709-2483-a11a-cb0e-eac0fb05d8e2

This performs the following:

  • Add an additional core to Domain 0, to reduce chances of CPU overload with DRBD
  • Waits for any sync to complete (if DRBD failed, it will continue, but you will have a split brain, or no DRBD at all)
  • Brings the DRBD device to primary mode. I have had only one DRBD device, but this can be performed selectively for each device
  • Reconnects the PBD which, till this point in the boot sequence, was disconnected. An important note – replace the uuid with the one discovered above for each host – each host should unplug its own PBD.

To sum it up – until sync has been completed, the PBD will not be plugged, and until then, no VMs can run on this SR. Split brain handling for A/P configuration is so much easier.

Some additional notes:

  • I have failed horribly when the interconnect cable was down. I did not implement hardware fencing mechanisms, but it would probably be a very good practice for production systems. Disconnecting the cross cable will result in a split brain.
  • For this system to be worthy, it has to have external monitoring. DRBD must¬†be monitored at all times.
  • Practice and document cases of single node failure, both nodes failure, host master failure, etc. Make sure you know how to react before it happens in real-life.
  • Performance was measured on a Linux RHEL6 VM to be about 82MB/s. The hardware it was tested on was Dell PE R610 with a very nice RAID5 array, etc. When the 2nd host was down, performance resulted in abour 450MB/s, so the bandwidth, in this¬†particular¬†case, matters.
  • Performance test was done using the command:
    dd if=/dev/zero bs=1M of=/tmp/test_file.dd oflag=direct
    Without the oflag=direct, the system will overload the disk write cache of the OS, and not the disk itself (at least – not immediately).
  • I did not test random-access performance.
Hope it helps

Oracle Clusterware as a 3rd party HA framework

Friday, June 12th, 2009

Oracle begin to push their Clusterware as a 3rd party HA framework. In this article we will review a quick example of how to do it. I will refer to this post as a quick-guide, as this is by no means any full-scale guide.

This article assumes you have installed Oracle Clusterware following one of the few links and guides available on the net. This quick-guide applies to both Clusterware 10 and Clusterware 11.

We will discuss the method of adding an additional NFS service on Linux.

In order to do so, you will need a shared storage – assuming the goal of the exercise is to supply the clients with a consistent storage services based on NFS. I, for myself, prefer to use OCFS2 as the choice file system for shared disks. This goes well with Oracle Clusterware, as this cluster framework does not handle disk mounts very well, and unless you are to write/search an agent which will make sure that every mount and umount behave correctly (you wouldn’t want to get a file system corruption, would you?), you will probably prefer to do the same. The lack of need to manage the disk mount actions will both save time on planned failover, and will guarantee storage safety. If you have not placed your CRS and Vote on OCFS2, you will need to install OCFS2 from here and here, and then to configure it. We will not discuss OCFS2 configuration in this post.

We will need to assume the following prerequisites:

  • Service-related IP address: 1.2.3.4. Netmask 255.255.255.248. You need this IP to be member of the same class as your public network card is.
  • Shared Storage: Formatted to OCFS2, and mounted on both nodes on /shared
  • Oracle Clusterware installed and working
  • Cluster nodes names are “node1” and “node2”
  • Have $CRS_HOME point to your CRS installation
  • Have $CRS_HOME/bin in your $PATH

We need to create the service-related IP resource first. I would recommend to have an entry in /etc/hosts for this IP address on both nodes. Assuming the public NIC is eth0, The command would be

crs_profile -create nfs_ip -t application -a $CRS_HOME/bin/usrvip -o oi=eth0,ov=1.2.3.4,on=255.255.255.248

Now you will need to set running permissions for the oracle user. In my case, the user name is actually “oracle”:

crs_setperm nfs_ip -o root
crs_serperm nfs_ip -u user:oracle:r-x

Test that you can start the service as the oracle user:

crs_start nfs_ip

Now we need to setup NFS. For this to work, we need to setup the NFS daemon first. Edit /etc/exports and add a line such as this:

/shared *(rw,no_root_sqush,sync)

Make sure that nfs service is disabled during startup:

chkconfig nfs off
chkconfig nfslock off

Now is the time to setup Oracle Clusterware for the task:

crs_profile -create share_nfs -t application -B /etc/init.d/nfs -d “Shared NFS” -r nfs_ip -a sharenfs.scr -p favored -h “node1 node2” -o ci=30,ft=3,fi=12,ra=5
crs_register share_nfs

Deal with permissions:

crs_setperms share_nfs -o root
crs_setperms share_nfs -u user:oracle:r-x

Fix the “sharenfs.scr” script. First, find it. It should reside in $CRS_HOME/crs/scripts if everything is OK. If not, you will be able to find it in $CRS_HOME using find.

Edit the “sharenfs.scr” script and modify the following variables which are defined relatively in the beginning of the script:

PROBE_PROCS=”nfsd”
START_APPCMD=”/etc/init.d/nfs start
START_APPCMD2=”/etc/init.d/nfslock start”
STOP_APPCMD=”/etc/init.d/nfs stop”
STOP_APPCMD2=”/etc/init.d/nfslock stop”

Copy the modified script file to the other node. Verify this script has execution permissions on both nodes.

Start the service as the oracle user:

crs_start sharenfs

Test the service. The following command should return the export path:

showmount -e 1.2.3.4

Relocate the service and test again:

crs_relocate -f sharenfs
showmount -e 1.2.3.4

Done. You now have HA NFS service above Oracle Clusterware framework.

I used this web page as a reference. I thank him for his great work!