Posts Tagged ‘JBOD’

HA ZFS NFS Storage

Tuesday, January 29th, 2019

I have described in this post how to setup RHCS (Redhat Cluster Suite) for ZFS services, however – this is rather outdated, and would work with RHEL/Centos version 6, but not version 7. RHEL/Centos 7 use Pacemaker as a cluster infrastructure, and it behaves, and configures, entirely differently.

This is something I’ve done several times, however, in this particular case, I wanted to see if there was a more “common” way of doing this task, if there was a path already there, or did I need to create my own agents, much like I’ve done before for RHCS 6, in the post mentioned above. The quick answer is that this has been done, and I’ve found some very good documentation here, so I need to thank Edmund White and his wiki.

I was required to perform several changes, though, because I wanted to use IPMI as the fencing mechanism before using SCSI reservation (which I trust less), and because my hardware was different, without multipathing enabled (single path, so there was no point in adding complexity for no apparent reason).

The hardware I’m using in this case is SuperMicro SBB, with 15x 3.5″ shared disks (for our model), and with some small internal storage, which we will ignore, except for placing the Linux OS on.

For now, I will only give a high-level view of the procedure. Edmund gave a wonderful explanation, and my modifications were minor, at best. So – this is a fast-paced procedure of installing everything, from a thin minimal Centos 7 system to a running cluster. The main changes between Edmund version and mine is as follows:

  • I used /etc/zfs/vdev_id.conf and not multipathing for disk names aliases (used names with the disk slot number. Makes it easier for me later on)
  • I have disabled SElinux. It is not required here, and would only increase complexity.
  • I have used Stonith levels – a method of creating fencing hierarchy, where you attempt to use a single (or multiple) fencing method(s) before going for the next level. A good example would be to power fence, by disabling two APU sockets (both must be disconnected in parallel, or else the target server would remain on), and if it failed, then move to SCSI fencing. In my case, I’ve used IPMI fencing as the first layer, and SCSI fencing as the 2nd.
  • This was created as a cluster for XenServer. While XenServer supports both NFSv3 and NFSv4, it appears that the NFSD for version 4 does not remove file handles immediately when performing ‘unexport’ operation. This prevents the cluster from failing over, and results in a node reset and bad things happening. So, prevented the system from exporting NFSv4 at all.
  • The ZFS agent recommended by Edmund has two bugs I’ve noticed, and fixed. You can get my version here – which is a pull request on the suggested-by-Edmund version.

Here is the list:

yum groupinstall “high availability”
yum install epel-release
# Edit ZFS to use dkms, and then
yum install kernel-devel zfs
Download ZFS agent
wget -O /usr/lib/ocf/resource.d/heartbeat/ZFS https://raw.githubusercontent.com/skiselkov/stmf-ha/e74e20bf8432dcc6bc31031d9136cf50e09e6daa/heartbeat/ZFS
chmod +x /usr/lib/ocf/resource.d/heartbeat/ZFS
systemctl disable firewalld
systemctl stop firewalld
systemctl disable NetworkManager
systemctl stop NetworkManager
# disable SELinux -> Edit /etc/selinux/config
systemctl enable corosync
systemctl enable pacemaker
yum install kernel-devel zfs
systemctl enable pcsd
systemctl start pcsd
# edit /etc/zfs/vdev_id.conf -> Setup device aliases
zpool create storage -o ashift=12 -o autoexpand=on -o autoreplace=on -o cachefile=none mirror d03 d04 mirror d05 d06 mirror d07 d08 mirror d09 d10 mirror d11 d12 mirror d13 d14 spare d15 cache s02
zfs set compression=lz4 storage
zfs set atime=off storage
zfs set acltype=posixacl storage
zfs set xattr=sa storage

# edit /etc/sysconfig/nfs and add to RPCNFSDARGS “-N 4.1 -N 4”
systemctl enable nfs-server
systemctl start nfs-server
zfs create storage/vm01
zfs set [email protected]/24,async,no_root_squash,no_wdelay storage/vm01
passwd hacluster # Setup a known password
systemctl start pcsd
pcs cluster auth storagenode1 storagenode2
pcs cluster setup –start –name zfs-cluster storagenode1,storagenode1-storage storagenode2,storagenode2-storage
pcs property set no-quorum-policy=ignore
pcs stonith create storagenode1-ipmi fence_ipmilan ipaddr=”storagenode1-ipmi” lanplus=”1″ passwd=”ipmiPassword” login=”cluster” pcmk_host_list=”storagenode1″
pcs stonith create storagenode2-ipmi fence_ipmilan ipaddr=”storagenode2-ipmi” lanplus=”1″ passwd=”ipmiPassword” login=”cluster” pcmk_host_list=”storagenode2″
pcs stonith create fence-scsi fence_scsi pcmk_monitor_action=”metadata” pcmk_host_list=”storagenode1,storagenode2″ devices=”/dev/sdb,/dev/sdc,/dev/sdd,/dev/sde,/dev/sdf,/dev/sdg,/dev/sdh,/dev/sdi,/dev/sdj,/dev/sdk,/dev/sdl,/dev/sdm,/dev/sdn,/dev/sdo,/dev/sdp” meta provides=unfencing
pcs stonith level add 1 storagenode1 storagenode1-ipmi
pcs stonith level add 1 storagenode2 storagenode2-ipmi
pcs stonith level add 2 storagenode1 fence-scsi
pcs stonith level add 2 storagenode2 fence-scsi
pcs resource defaults resource-stickiness=100
pcs resource create storage ZFS pool=”storage” op start timeout=”90″ op stop timeout=”90″ –group=group-storage
pcs resource create storage-ip IPaddr2 ip=1.1.1.7 cidr_netmask=24 –group group-storage

# It might be required to unfence SCSI disks, so this is how:
fence_scsi -d /dev/sdb,/dev/sdc,/dev/sdd,/dev/sde,/dev/sdf,/dev/sdg,/dev/sdh,/dev/sdi,/dev/sdj,/dev/sdk,/dev/sdl,/dev/sdm,/dev/sdn,/dev/sdo,/dev/sdp -n storagenode1 -o on
# Checking if the node has reservation on disks – to know if we need to unfence
sg_persist –in –report-capabilities -v /dev/sdc

Connecting EMC/NetApp shelves as JBOD to a Linux machine

Wednesday, April 29th, 2015

Let’s say you have old shelves of either EMC or NetApp with SAS or SATA disks in them. And let’s say you want to connect them via FC to a Linux machine and have some nice ZFS machine/cluster, or whatever else. There are few things to know, and to attend in order for it to work.

The first one is the sector size. For NetApp – this applies only to non SATA disks (I don’t know about SSDs, though), and for EMC this could apply, as far as I noticed, to all disks – sector size is not 512 bytes, but 520 – the additional 8 bytes are used for block checksum. Linux does not handle well 520 blocks – the following error message will appear in the logs:

Unsupported sector size 520.

To solve it, we will need to identify the disks – using sg3_utils (in Centos-like – yum install sg3_utils) and then modify them to block size of 512 bytes. To identify the disks, run:

sg_scan -i
/dev/sg0: scsi0 channel=3 id=0 lun=0
HP P410i 3.66 [rmb=0 cmdq=1 pqual=0 pdev=0xc]
/dev/sg1: scsi0 channel=0 id=0 lun=0
HP LOGICAL VOLUME 3.66 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg2: scsi3 channel=0 id=0 lun=0 [em]
hp DVD A DS8A5LH 1HE3 [rmb=1 cmdq=0 pqual=0 pdev=0x5]
/dev/sg3: scsi1 channel=0 id=0 lun=0
SEAGATE SX3500071FC DA04 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg4: scsi1 channel=0 id=1 lun=0
SEAGATE SX3500071FC DA04 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg5: scsi1 channel=0 id=2 lun=0
SEAGATE SX3500071FC DA04 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg6: scsi1 channel=0 id=3 lun=0
SEAGATE SX3500071FC DA04 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg7: scsi1 channel=0 id=4 lun=0
SEAGATE SX3500071FC DA04 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg8: scsi1 channel=0 id=5 lun=0
SEAGATE SX3500071FC DA04 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg9: scsi1 channel=0 id=6 lun=0
SEAGATE SX3500071FC DA04 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg10: scsi1 channel=0 id=7 lun=0
SEAGATE SX3500071FC DA04 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg11: scsi1 channel=0 id=8 lun=0
FUJITSU MXW3300FE 0906 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg12: scsi1 channel=0 id=9 lun=0
FUJITSU MXW3300FE 0906 [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg13: scsi1 channel=0 id=10 lun=0
SEAGATE SX3300007FC D41B [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg14: scsi1 channel=0 id=11 lun=0
SEAGATE SX3300007FC D41B [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg15: scsi1 channel=0 id=12 lun=0
SEAGATE SX3300007FC D41B [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg16: scsi1 channel=0 id=13 lun=0
SEAGATE SX3300007FC D41B [rmb=0 cmdq=1 pqual=0 pdev=0x0]
/dev/sg17: scsi1 channel=0 id=14 lun=0
SEAGATE SX3300007FC D41B [rmb=0 cmdq=1 pqual=0 pdev=0x0]

So, for each sg device (member of our batch of disks) we need to modify the sector size.

Two ways to do so – the first suggested by this post here, is by using sg_format in the following manner:

sg_format –format –size=512 /dev/sg2

Another post suggested using a dedicated program called ‘setblocksize’. I followed this one, and it worked fine. I had to power cycle the disks before the Linux could use them.

I did notice that disk performance were not bright. I got about 45MB/s write, and about 65-70 MB/s read for large sequential operations, using something like:

dd bs=1M if=/dev/sdf of=/dev/null bs=1M count=10000
dd bs=1M if=/dev/null of=/dev/sdf oflag=direct count=10000 # WARNING – this writes on the disk. Do not use for disks with data!

Fairly disappointing. Also, using multipath, when the shelf is connected to one FC port, and then back to another, showed me that with the setting:

path_grouping_policy multibus

I got about 10MB/s less compared to using “failover” flag (the default for Centos 6). Whatever modification I did to the multipathd.conf, I was unable to exceed this number when using multiple access. These results were consistent when using multibus or group_by_serial, however, when a single path was active and the other was passive, It clearly showed better. I did modify rr_min_io and rr_min_io_rq, but with no effect.

The low disk performance could suggest I need to flush the original disk firmware, however, I am not sure I will do so. If anyone is reading this and had different results – I would love to hear about it.